
DCP: An Efficient and Distributed Data Center
Cache Protocol with Fat-Tree Topologyt

II. DESIGN OF DCP PROTOCOL
In this section, we present the detailed design of DCP

protocol. DCP specifies how packets are cached in data center
switches. Moreover, it defines how switches and servers com
municate with each other and share cache information with
each other in a Fat-Tree based data center and how to eliminate
redundant traffic in the data center using the cache.

A. Overview
Data center Cache Protocol is a specified cache protocol

for data center with Fat-Tree topology [8]. Fat-Tree topology
connects commodity switches and servers based on Clos
network [9], and it allocates IP addresses to servers and
switches within the 10.0.0.0/8 block following specific criteria.
Moreover, they provide an efficient routing algorithm using
two level routing table. A sample Fat-Tree topology is shown
in Fig. 1.

The goal of DCP is to eliminate traffic redundancy in
a data center network. Briefly speaking, DCP contains two
strategies: the strategy for packet routing and caching; and the

tThis work has been supported in part by Shanghai Educational De
velopment Foundation (Chenguang Grant No. 12CG09), Shanghai Pujiang
Program 13PJ1403900, the Natural Science Foundation of Shanghai (Grant
No. 12ZR1445000), and the National Natural Science Foundation of China
(Grant number 61202024).

*X.Gao is the corresponding author.

I. INTRODUCTION
As the appearance of cloud services like social network,

cloud storage, and cloud computing, the server-side takes more
responsibility for storing and processing data. To achieve better
performance of these tasks, many famous platforms are intro
duced, such as Google App Engine (GAE). All of them have
heavy workloads and require enormous computing capacity,
which lead to a large quantity of communications in the
network. For example, a lot of communication among different
servers is required to fetch or search for data in distributed
storage systems, like GFS [1] and BigTable [2], since one
server has to access local information of the remote server to
proceed local search and computation. MapReduce [3] shuffles
its intermediate files to distinct destination servers between its
map phase and reduce phase, which costs much inter-node
bandwidth. Thus, it is important to eliminate redundant traffic
in a data center and increase data center's utilization ratio.

Some protocol-independent approaches are proposed to
cache the duplicate contents of different applications [4]. Y.
Cui et al. [5] proposed a mechanism of redundancy elimination
in data center. They gave a linear programming with an objec
tive function which maximizes the redundancy elimination of
the data center. They also proposed an approximate centralized
algorithm. However, their approach is impractical in the real
data center because it needs too much memory regarding
the number of packets and a central server is required to
store cache information of all the switches. Researchers have
done a lot of work on redundancy elimination in Internet.

Zhihui Jiang, Zhiming Ding, Xiaofeng Gao*, Guihai Chen
Department of Computer Science and Engineering, Shanghai Jiao Tong University

{zhihuijiang730, dingzhm93} @gmail.com, {gao-xf, gchen} @cs.sjtu.edu.cn

Abstract-In the big data era, the principal traffic bottleneck Internet Cache Protocol (ICP) [6] and Summary Cache [7] are
in a data center is the communication between hosts. Moreover, two well-known web cache protocols, both of which propose
the redundant packet contents indeed take a major part of the efficient web cache mechanisms to remove duplicate contents
bottleneck. In this paper, we propose a distributed and efficient in Internet and reduce transmission delay of web request.
cache sharing protocol, named DCP, to eliminate redundant However, they are specially designed for web applications in
traffic in data center with Fat-Tree topology. In DCP, each switch
holds packet caches, which are used for eliminating redundant Internet, which cannot handle packets of various protocols in
packets. A cache sharing mechanism using Bloom Filter is also a data center. Moreover, they are not suitable for data center
proposed to share local caches of switches with servers. Moreover, caches because they do not leverage the specific topology and
we propose another technique leveraging Bloom Filter to reduce routing algorithms of a data center. Thus, it is necessary to
false positive ratio caused by sharing cache information between raise a practical cache protocol for a real data center.
switches and servers. We build up a Fat-Tree topology with Fat-Tree is a scalable data center topology which has been
k == 16 to evaluate the performance of DCP, and the simulation adopted by Cisco's massively data center using commodity
results show that DCP can eliminate 40% to 60% redundant servers and switches to construct a large scale cluster. Corre-
packets, which validate its efficiency. spondingly, in this paper, we propose a practical redundancy

Index Terms-Data Center Network, Fat-Tree, Bloom Filter, elimination protocol named DCP with Fat-Tree topology. As
Cache Protocol, Redundancy Elimination far as we know, we are the first to cope with such a data center

cache protocol. DCP meets the following goals:
• Distributed: Caches are well-distributed on different

switches which share local cache information with servers
periodically so that each server obtains a global view of
all cache information on switches.

• Efficient: We employ Bloom Filter to encode the cache
information to achieve better efficiency of cache sharing.

• Scalable: Our approach is scalable based on the scalability
of Fat-Tree and our simulation proves the results.

The rest of the paper is organized as follows. Section
II presents the detailed design and implementation of DCP.
Performance evaluation of DCP is presented in Section III.
Section IV concludes our paper.

Copyright lEICE - Asia-Pacific Network Operation and
Management Symposium (APNOMS) 2014



Fig. 1: A Sample Fat-Tree Topology with 4 pods

strategy for cache sharing and cache replacing. The strat~gy for
packet routing and caching is the key part of DC:P, whIch can
reduce redundant traffic significantly. CorrespondIngly, when a
server receives a packet request from another server, the source
server firstly looks up its local cache table to check whether
there exists a switch storing the cache of this packet along
the determined path to the receiver. If yes, then the source
server will send a compact packet with a key representing the
packet instead of the original packet to the switch containi~g

the required cache. When the compacted packet reaches t~IS

switch, the switch will check its local packet cache accordIng
to the key, extract the original data from its cache to replace
the compacted one, and then continue forward the new packet
to the destination. The principle is depicted in Fig. 2.

Fig. 2: Principle of Redundancy Elimination
The strategy for cache sharing and replacing is used to help

the servers get the latest information and also grab the most
popular packet. Firstly, because of the limited switch memory
and the variety of packets, the switch can replace some caches
with others to reduce the traffic. Secondly, switches will
periodically share its cache informatio~ among th~ s~r:ers,

so that each server is aware of the localIty of every IndIVIdual
cache information thus getting a global view of caches.

The data flow of DCP is as follows: Whenever a server
wants to send a TCP packet to another server, the server
firstly encapsulates the TCP packet into a DCP packet. The
DCP packet may be a compressed form of the TCP packet
or the original TCP packet with additional information. The
DCP packet is sent to the edge switch connecting to the s~rver,

and then the DCP packet is routed through several sWItches
until reaching the destination server. The destination server
will decapsulate the DCP packet and get the original packet.
When the DCP packet flows through the switches, the switches
may take more actions according to the DCP packet type: The
packet may be uncompressed, or a new cache is placed in the
switch, or a feedback packet of cache miss is sent.

B. Packet Header of DCP
Each application packet is encapsulated in a DCP packet

as data with extra DCP headers added beforehand. The DCP

header is presented in Fig. 3 with a variable length from 32 to
96 bits. The first 8 bits of each header is a tag identifying the
category of data carried in a DCP packet. We us~ 6 of the 8
bits with each bit identifying one kind of data whIle another 2
bits are reserved for future use. The packet header is depicted
in Fig. 4. We describe each kind of DCP packet as follows:.

Original packet: The application level TCP packet IS
sent from source server to destination server without any
compression or uncompression.

Compressed packet: The TCP packet is sent after com
pression. Moreover, another 64 bits will be appended to D~P

header representing the compressing server and uncompressing
switch IP address respectively.

Uncompressed packet: When the compressed packet
reaches the uncompressing switch, the uncompressing switch
searches its local cache and get a cache hit, then the com
pressed packet is uncompressed.

Bloom Filter packet: The payload of this kind DCP packet
is a bit array. It is used for sharing switch's local information
with servers, more details are provided in Section II-C.

False positive feedback packet: When a compressed
packet reaches its uncompressing switch, if the s~itch ~oes

not find the packet in its local cache, the uncompressing sWItch
will send back a feedback to the compressing server.

Cache placement packet: When a server sends an original
packet, we need to place a cache item for the packet in some
switch along its routing path.

Fields relevant to TOP

l J

Fig. 3: Packet Header Fields of DCP Protocol

Fig. 4: Header for Each Kind of DCP Packet

C. Cache Sharing Mechanism
In each switch, there is an in memory data structure storing

the cache of packets. Each entry of the cache is in the form
of (key, value) pair where key is the 128-bit. digest .w~en

MD5 algorithm [10] applied to value and value IS the onginal
TCP packet content. The number of cache entries, deno~ed as
cache-no, is a parameter that can be configured accordIng to
the main memory size of each switch.

We use Bloom Filter to store the summary of local cached
packets and share the summary between servers. Every switch
has a data structure using Bloom Filter named packet-set, as
depicted in Fig. 5, storing the summary of the cache-no cached
packets in a switch as an array of m bits.

Every server has two Bloom Filters named cache-table and
fp-table as in Fig. 5. The cache-table is a map of sentries,
each storing an (ip,packet-set) pair, where s is the number
of switches in the data center. The key is the ip address of
a switch in the data center and the value is packet-set of



packet-set

Fig. 5: Three Data Structures using Bloom Filter

the corresponding switch. The fp-table has the same structure
as the cache-table which stores the false positive feedback
information from the corresponding switch. How these Bloom
Filter structures are used to share cache information and reduce
false positive ratio are described below:

When a server wants to send a packet to another server,
it will first get the routing path and the switches along the
path, then get the packet-set (named ps) for each of these
switches in cache-table. If the packet cache is found in one of
the down-link switches, then a compressed packet is sent, else
an original packet is sent.

When a server receives a Bloom Filter packet from a
switch, the server will update the value of the entry in
cache-table corresponding to the source switch.

When a compressed packet is sent from source server, but
actually the packet is not cached in the uncompressing switch,
in such case a false positive occurs. For each packet that has a
cache in switch with address swt according to cache-table in a
server, but it turns out the packet is not cached in switch swt,
then this packet will be inserted into fp-table corresponding
to entry swt. The false positive ratio reduction is achieved
by checking fp-table before cache-table every time searching
for a packet cache in some switch. If the packet is found in
fp-table, then the cache-table is not searched. If the packet is
not found in fp-table, then cache-table is searched.

D. Packet Encapsulation and Routing Mechanism
To encapsulate a TCP packet in a DCP packet, the server

first gets all the switches this TCP packet will pass through.
Then the server computes the packet's MD5 digest and get k
hash values from the digest. If there is cache hit, the server
sets the compressed sign bit of DCP header and fills the source
server address and destination cache switch address in the DCP
packet header and fills the packet content with digest. If there
is no cache, the server first chooses a switch along the path
to place a cache for this TCP packet, then sets the original
packet bit and fills DCP packet content with original TCP
packet. Each time a server wants to send a packet to another
server, it first generates an original packet or a compressed
packet, and then send this DCP packet to the connected edge
switch.

When the DCP packet reaches the destination server, the
server will decapsulate the DCP packet to a TCP packet. A
destination server will receive two kinds of DCP packet: an
uncompressed packet or an original packet. The packet content
of them will be extracted as original TCP packet.

Next, we propose how a DCP packet passes through
switches until it reaches destination server. How the switch
forwards the packet is shown below:

For an original packet, the switch first checks the
cache switch ip address. If this address equals to the local IP
address, then the switch extracts packet content and computes
MD5 digest to add this packet to its local cache by LRU
algorithm [11]. Meanwhile, the switch computes k hash values

from the MD5 digest to update packet-set. If cache switch ip
address is not local IP address, the switch will forward the
packet directly to next hop switch.

For compressed packet, the switch first extracts source
server IP sip and destination switch IP dip from packet header.
If dip equals local IP address, then it gets the MD5 digest of
the packet as dgst. Then the switch searches its local caches for
dgst. If the cache exists, the switch retrieves the original packet
content from the local cache and makes up an uncompressed
packet with the original packet. Then the uncompressed packet
is forwarded to the next hop switch or server. If the cache does
not exist, the switch sends a false positive packet back to sip
to tell sip that a false positive happens on dip with packet
dgst, afterwards drops this packet. If dip is not the local IP
address, then forward the packet to next hop switch.

For uncompressed packet, just forward it to next hop switch
until it reaches the destination server.

For Bloom Filter packet, core switches and aggregation
switches route it following Fat-Tree's routing protocol. Edge
switches broadcast the packet to all the servers in its subnet.
When a server receives a Bloom Filter packet, it extracts the
switch IP address and bit array from the header, then update
local cache-table corresponding to the switch.

For false positive packet, the packet is routed by Fat-Tree's
routing protocol until it reaches the source server. When a
server receives a false positive packet, it extracts the switch IP
address where false positive happens at sip, and MD5 digest
dgst from packet header. Then dgst is inserted into the entry
corresponding to sip in fp-table.

III. PERFORMANCE EVALUATION
The following metrics are used for evaluations. Packet

transmission delay, the time for a packet to transmit from
one server to another server in the data center. Bandwidth
reduction, how much network bandwidth it saves by a cache
scheme. Cache hit ratio, the ratio of packets that has a cache
in switches of its routing path.

Experiment Setup: We build up a Fat-Tree data center with
16 pods, which has 1024 servers, 128 edge switches, 128
aggregation switches, and 64 core switches. The packets are
generated by servers which have a default Zipf distribution.

Fig. 6(a) presents the result of transmission delay time
of packets. When the packet number is below lOOK, the
transmission delay time of DCP is the largest because it
spends much time on the calculation of MD5 and Bloom
Filter. Fig. 6(b) shows the reduced network bandwidth. DCP
beats SimpleCache because cache information are shared with
Bloom Filter which increase the hit ratio a lot. Fig. 6(c) shows
the ratio of a packet to hit a cache item in the switches. The
hit ratio of DCP is about twice higher than SimpleCache.

Figure 7(a) presents the bandwidth reduction of Bloom
Filter. When Bloom Filter is used, each switch shares its local
cache items with a Bloom Filter bit array. Otherwise, the
MD5 digest for each cache items are shared among switches.
Sharing MD5 digest of each packet does reduce the consumed
bandwidth because it increases the hit ratio of cache item.

In Fig. 7(b) and Fig. 7(c), we evaluate the impact of cache
information update interval by bandwidth reduction and hit
ratio. The total number of packets sent by servers is lOOK
and 150K respectively. From Fig. 7(b), we can see that when
switch's local cache information is shared too frequently,
the bandwidth reduction is not very sharp. As the interval



Fig. 8: Performance of Different Cache Replacement Algorithm used by Switch

increases, there is a balance between cache information and
packets transmitted in the network. From Fig. 7(c), we evaluate
the relationship between hit ratio and cache update interval.
It is very clear that as the update frequency decreases, the
hit ratio decreases since each switch holds more out-of-dated
cache information.

There are various cache replacement algorithms pro
posed, we choose to evaluate three classical algorithms(Least
Recent!y-Used,Most-Recent!y-Used,Random-Replacement) to
test which one is best suited for our DCP protocol. From
Fig. 8(c), we can see that the hit ratio of LRU is the highest.
Similar to the hit ratio, the saved bandwidth of LRU is the
best, with RR follows in Fig. 8(b). Besides, we evaluate the
transmission delay for various number of packets, the delay
of MRU is the highest, while LRU is lowest. Taken these
aspects into consideration, we choose LRU as the default cache
replacement algorithm for our DCP protocol.

IV. CONCLUSION
In this paper, we propose a distributed and efficient

cache sharing protocol for data center network with Fat-Tree
topology. The protocol header are presented in detail, and
the communication algorithms among switches are described
thoroughly. We also evaluate the performance of DCP from
different aspects. The simulation results show that our protocol
is practical and very efficient in reducing packet transmission

delay and eliminating redundancy packets in a data center.

REFERENCES
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The google file system,"

in ACM SIGOPS, 37(5): 29-43, 2003.
[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, "Bigtable: A
distributed storage system for structured data," ACM Transactions on
Computer Systems (TOCS), 26(2): 4, 2008.

[3] J. Dean and S. Ghemawat, "Mapreduce: simplified data processing on
large clusters," Communications of the ACM, 51(1): 107-113, 2008.

[4] D. Wetherall, "A protocol-independent technique for eliminating redun
dant network traffic," in ACM SIGCOMM, 30(4): 87-95, 2000.

[5] Y. Cui, S. Xiao, C. Liao, I. Stojmenovic, and M. Li, "Data centers as
software defined networks: Traffic redundancy elimination with wireless
cards at routers," IEEE Journal on Selected Areas in Communications,
31(12): 2658-2672, 2013.

[6] D. Wessels, "Application of internet cache protocol (icp)," 1997.
[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary cache: a scal

able wide-area web cache sharing protocol," IEEE/ACM Transactions,
8(3): 281-293, 2000.

[8] M. AI-Fares, A. Loukissas, and A. Vahdat, "A scalable, commodity data
center network architecture," in ACM SIGCOM, 38(4): 63-74, 2008.

[9] C. Clos, "A study of non-blocking switching networks," Bell System
Technical Journal, 32(2): 406-424, 1953.

[10] R. Rivest, "The md5 message-digest algorithm," 1992.
[11] T. Johnson and D. Shasha, "X3: A low overhead high performance

buffer management replacement algorithm," 1994.


